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Background and motivation



Security vulnerabilities in vehicular networks

• Communication among ve-

hicles, road-side units, and

road users becomes highly

vulnerable to malicious ac-

tors.

Figure 1: Vehicle-to-everything (V2X) connectivity
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Security vulnerabilities in vehicular networks

• Communication among ve-

hicles, road-side units, and

road users becomes highly

vulnerable to malicious ac-

tors.

• Novel security mechanisms

are essential to address vul-

nerabilities and reduce the

extent of their detrimental

effects on safety-critical ve-

hicular use cases.
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Misbehavior in vehicular networks
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Figure 2: Examples of misbehavior in the form of false data injection attacks

3



Challenges for misbehavior detection

Detection approaches:

• Entity-centric: Ephemeral V2X connections & high mobility

• Data-centric: Lack of global state information & assumption of honest

majority

Machine learning tools, although promising, face challenges:

• Limited access to labeled training examples

• Dependence on security threshold values

• Unprecedented malicious activity & unforeseen changes in V2X traffic
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Our approach

Ensemble learning framework:

• Unsupervised learning layer for discovering hidden patterns from un-

labeled V2X traffic traces

• Reinforcement learning (RL) layer for consistently improving detec-

tion experience over unknown V2X environments without relying on

security thresholds
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Ensemble learning for

misbehavior detection



Network scenario and attack model

• Sybil attack

• Data replay attack

• Denial-of-service (DoS) attack

• Disruptive attack
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Wireless Communication
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Figure 3: Considered scenario with vehicles

transmitting basic safety messages (BSMs)
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Methodology
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Figure 4: Proposed ensemble learning framework for unsupervised data

preprocessing and RL-based misbehavior detection.
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Unsupervised learning: K -means algorithm

• Generates ground truth in-

formation necessary for RL-

based detection
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Unsupervised learning: K -means algorithm

• Generates ground truth in-

formation necessary for RL-

based detection

• In each iteration, it mea-

sures the similarity of data

instances by computing their

Euclidean distance from the

centroid on the dimension of

the feature vector

8



Unsupervised learning: K -means algorithm

• Generates ground truth in-

formation necessary for RL-

based detection

• In each iteration, it mea-

sures the similarity of data

instances by computing their

Euclidean distance from the

centroid on the dimension of

the feature vector

• Instances belonging to the

cluster with the lowest num-

ber of samples are labeled as

misbehaving
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RL-based detection

Figure 5: Detection based on RL model

• Q(st , at)← Q(st , at) + α(rt + γmaxat+1 Q(st+1, at+1)− Q(st , at)).

• State contains the sequence of previous actions and the current ve-

hicular data.

• Agent selects the action a as: π∗(s) = argmax
a∈A

Q∗(s, a).

• Reward function R as: Rt =
∑

k

T

=t
γk−trk :

• Positive reward: True Positive (TP) or True Negative (TN).

• Negative reward: False Positive (FP) or False Negative (FN).
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Experiments and results



Dataset

• Vehicle traces in line with real-world field tests1; open source synthetic

traffic scenario validated with real data provided by the VehicularLab

of the University of Luxembourg.

Figure 6: VeReMi dataset

1VeReMi Dataset [Online]: https://github.com/josephkamel/VeReMi-Dataset 10



Settings and performance metrics

• A high-density (37.03 vehicles/km2) traffic scenario is used for train-

ing, while a low-density one (16.36 vehicles/km2) is used for testing.

• Varying proportion of misbehaving and legitimate vehicles.

• Feature engineering in exchanged messages:

• Timestamp, pseudo-identity, position, speed, acceleration, heading an-

gle.

• Euclidean norm of position, speed, acceleration and heading angle

vectors.

• Detection performance was evaluated based on commonly used met-

rics:

• Accuracy =
TP + TN

TP + TN + FP + FN
,

• Precision =
TP

TP + FP
,

• Recall =
TP

TP + FN
,

• F1 =
2 · Precision · Recall
Precision + Recall

.
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Clustering performance

Attack scenario K-means Spectral

Constant position 0.719 0.206

Random speed 0.719 0.152

Random speed offset 0.718 0.059

Table 1: Average silhouette score

• Spectral clustering algorithm treats data clustering as a graph parti-

tioning problem and offers equivalent simplicity as K -means

• Average silhouette coefficient is computed for each sample using the

mean intra-cluster and inter-cluster distance
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RL-based detection performance

• Effectively detected attacks

Type Attack Accuracy Precision Recall F1

1 Constant Position 0.9892 0.9648 1.0 0.9820

2 Constant Position Offset 0.9853 0.9512 1.0 0.9750

3 Random Position 0.9915 0.9724 1.0 0.9860

4 Random Position Offset 0.9831 0.9454 1.0 0.9719

5 Constant Speed 0.9918 0.9733 1.0 0.9864

6 Constant Speed Offset 0.9895 0.9661 1.0 0.9874

7 Random Speed 0.9924 0.9751 1.0 0.9874

8 Random Speed Offset 0.9913 0.9716 1.0 0.9856

9 Sudden Stop 0.8038 0.5839 0.7080 0.6400

10 Disruptive 0.9610 0.9868 0.9205 0.9525

11 Data Replay 0.9698 0.9826 0.9461 0.9640

12 Delayed Messages 0.9438 0.8445 1.0 0.9157

13 DoS 0.9539 0.9928 0.8922 0.9398

14 DoS Random 0.6411 0.6338 1.0 0.7759

15 DoS Disruptive 0.6353 0.6306 1.0 0.7735

16 Traffic Congestion Sybil 0.9895 0.9661 1.0 0.9827

17 Data Replay Sybil 0.7527 0.6166 0.9612 0.7512

18 DoS Random Sybil 0.7973 0.9507 0.4845 0.6419

19 DoS Disruptive Sybil 0.6501 0.8608 0.0714 0.1318

Table 2: Detection performance per attack
13
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RL-based detection performance

• Effectively detected attacks

• Moderately detected attacks
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Benchmark comparison

• Benchmark misbehavior

detectorsa:

• Support vector machine

(SVM)

• Multilayer perceptron (MLP)

aJ. Kamel et al., “Simulation framework for

misbehavior detection in vehicular networks,”

IEEE Trans. Veh. Technol., vol. 69, no. 6, pp.

6631– 6643, 2020

Attack type Approach Accuracy Precision Recall F1

1

K-means + MLP 0.9902 1.0 0.9669 0.9831

K-means + SVM 0.9418 1.0 0.8031 0.8908

K-means + RL 0.9892 0.9648 1.0 0.9820

9

K-means + MLP 0.5412 0.2057 0.3007 0.2443

K-means + SVM 0.5348 0.2066 0.3122 0.2486

K-means + RL 0.8038 0.5839 0.7080 0.6400

10

K-means + MLP 0.4604 0.4407 1.0 0.6118

K-means + SVM 0.9385 0.8868 0.9805 0.9313

K-means + RL 0.9610 0.9868 0.9205 0.9525

16

K-means + MLP 0.6141 0.6084 0.9781 0.7502

K-means + SVM 0.6711 0.6582 0.9257 0.7693

K-means + RL 0.9895 0.9661 1.0 0.9827

Table 3: Detection performance comparison
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(SVM)
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• RL-based detection is shown to

be less sensitive to inaccurate la-
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Real-time detection capabilities
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Figure 7: CDF of overall latency for testing datasets.

• Overall latency consists of the cumulative time elapsed for (i) envi-

ronment setup (ii) loading a trained model (iii) detection.

• Average latency measured for steps (i)-(iii) is: 19.93 ms, 182.12 ms,

and 3.15 ms, respectively.
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Conclusion



Concluding remarks and path forward

• An ensemble learning methodology is introduced to accurately detect

misbehaving vehicles in vehicular networks.

• While the majority of attack variants can be effectively detected, de-

tection was curtailed for certain misbehavior types.

• RL-based misbehavior detection is shown to be more robust to noisy

training data compared to its classifier counterparts.

Future work:

• Incorporate trust of road side units into collaborative misbehavior de-

tection, by leveraging the real-time capabilities of our framework.
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